

"Cold Energy: un turbo per l'efficienza energetica"

Agnese Manni Gubbio, Centro Convegni Santo Spirito 7 Luglio 2017

LA SOCIETA'

TURBOALGOR S.R.L.

La Società **Turboalgor S.r.l.** appartiene alla sub-holding Angelantoni CleanTech del Gruppo Angelantoni Industrie (AI).

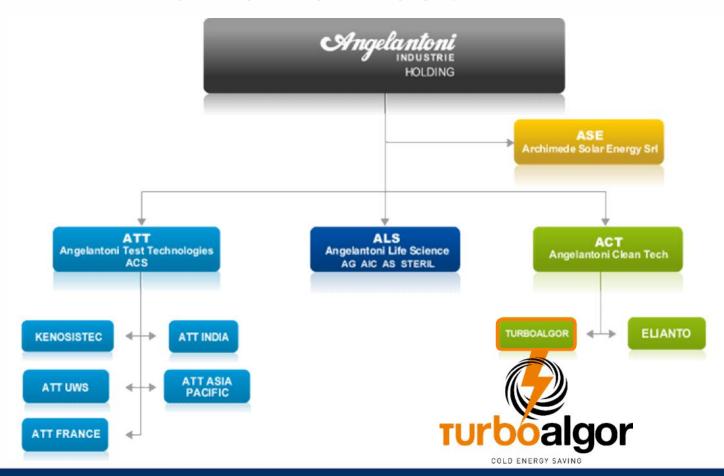
Al è costituito da unità produttive e logistiche in Italia e nel Mondo ed opera per essere leader nei settori delle apparecchiature biomedicali, dei sistemi di test ambientali e delle energie rinnovabili, in particolare nell'ambito dell'energia solare termodinamica e dell' efficienza energetica.

Angelantoni CleanTech (ACT) opera nel settore delle energie rinnovabili e dell'efficienza energetica. ACT è socio di maggioranza di Turboalgor S.r.l.

LE MAR S.r.l. è una società operante nel settore immobiliare, caratterizzata da un forte imprinting verso la CSR (<u>Corporate Social Responsibility</u>), grazie al quale ha deciso di valutare l'opportunità di investire nell'innovazione finalizzata all'efficienza energetica.

Da qui la scelta da parte della holding finanziaria di diversificare il proprio core-business entrando nel capitale di Turboalgor S.r.l. come socio di riferimento.

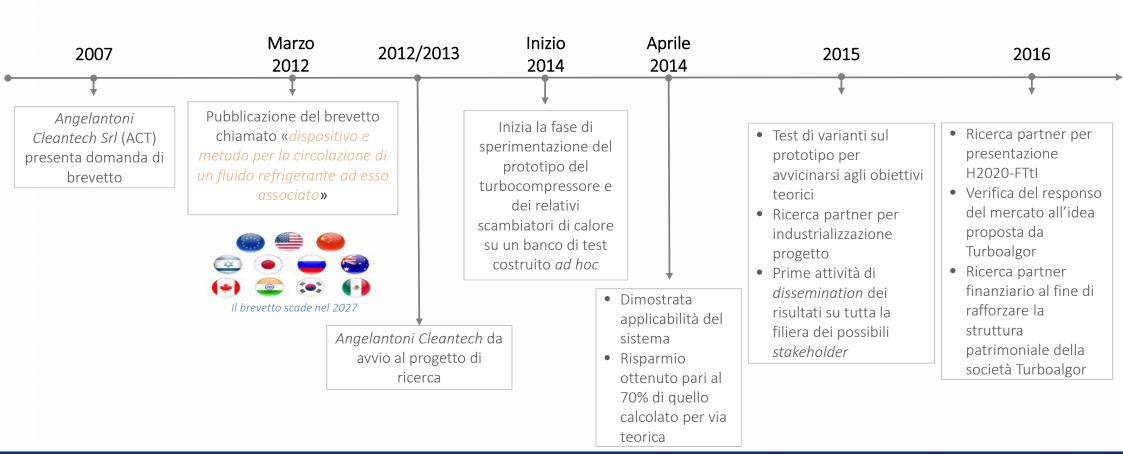
I soci di minoranza della Turboalgor S.r.l. sono rappresentati da alcuni dipendenti del Gruppo Angelantoni Industrie, i quali hanno fortemente creduto nel progetto Cold Energy.


IL GRUPPO (1)

STRUTTURA SOCIETARIA

IL GRUPPO (2)

STRUTTURA SOCIETARIA


LA STORIA

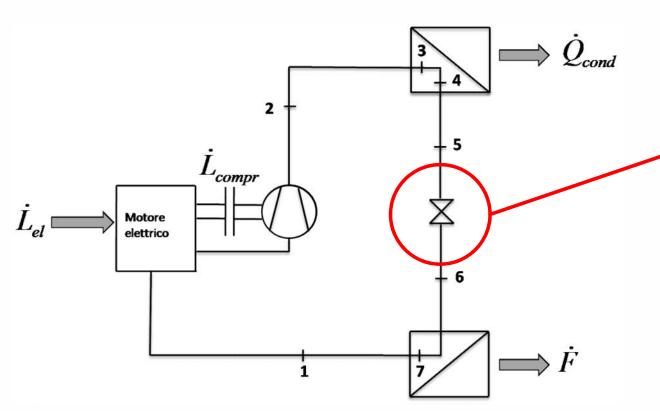
LE TAPPE PRINCIPALI

LA FASE DI RICERCA...

IL TEAM

La prima fase di ricerca è stata condotta dall'Ingegnere Maurizio Ascani, padre dell'idea innovativa, e dall'Ingegnere Agnese Manni in collaborazione con:

IL PUNTO DI PARTENZA



CICLO FRIGORIFERO A COMPRESSIONE

Schema di principio

PUNTO DI INEFFICIENZA:

la valvola di laminazione porta il liquido refrigerante da una pressione alta a una pressione bassa senza utilizzarne l'energia potenzialmente disponibile

OBIETTIVO DELLA RICERCA

• Riuscire a utilizzare tutta l'energia presente nel refrigerante aumentando l'efficienza di tutto il processo

 Realizzare un dispositivo che, applicato ad un impianto frigorifero a compressione, consenta un risparmio energetico in linea con i valori determinati teoricamente, utilizzando macchine commerciali modificate

LA SOLUZIONE ADOTTATA

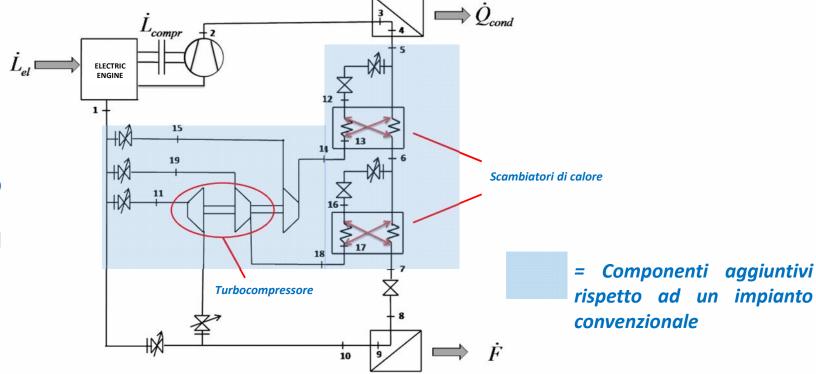
L'IDEA INNOVATIVA

 Introdurre un <u>TURBOCOMPRESSORE</u> (1) e due <u>SCAMBIATORI DI CALORE PER IL RECUPERO DI ENERGIA</u> (2) all'interno di un impianto di refrigerazione convenzionale

(1)

(2)

COSA CAMBIA?



CICLO FRIGORIFERO CON DISPOSITIVO TURBOALGOR

Schema di principio

Il vapore prodotto negli scambiatori viene elaborato nel turbocompressore, che effettua una precompressione del fluido refrigerante e, in tal modo, permette una riduzione del fabbisogno energetico del compressore principale

IL BREVETTO

All'Ufficio Italiano Brevetti e Marchi Via Molisc, 19 ROMA

OCCETTO: Traduzione del testo del brevetto europeo No. 214726531 (art. 4 D.P.R. 8-1-1979, n. 32)

La Diffa: ANGELANTONI CLEANTECH SRL

di nazionalità: ITALIANA con sede in Loc. Cimacelle 464 - 06056 Massa Martana (PERUGIA)

Via / No./ A mozzo mandatario Dott. Roberto Pistolesi elettivamente domiciliato in: Via Nino Bislo, 7 - 20125 Milano

presso: DRAGOTTI & ASSOCIATI SRI.

DEPOSITA PRESSO CODESTO UFFICIO

ai fini previsti dal citato art. 4 l'allegata traduzione in lingua italiana del testo nel quale l'Ufficio Europeo Brevetti concede/mantiene in forma modificata il brevetto europeo rilasciato per l'Italia di cui è titolare, No. 214726581

avente per litolo: "Dispositivo refrigerante e procedimento di circolazione di un "luido refrigerante ad esso associato"

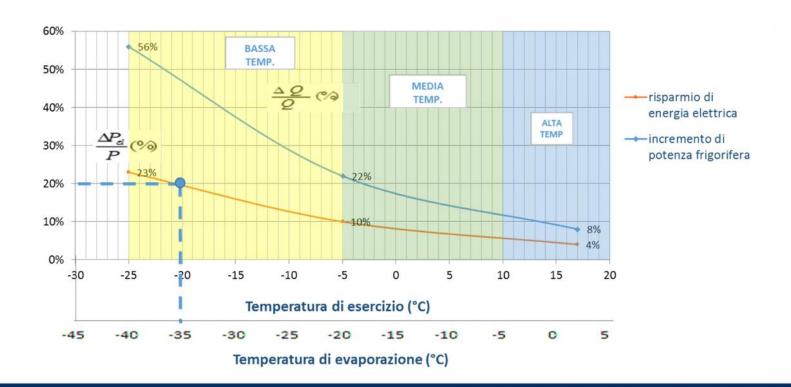
Depositato il 22 Maggie 2007 con il No. 07736863.7

Classificazione: F25B 11/02, F25B 1/10, F25B 1/053

II Managlaro Dott Roberto Fistolesi

La validità del brevetto è stata estesa a tutto il MONDO

I RISULTATI TEORICI...



RISULTATI TEORICI

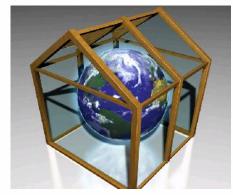
Risparmio di energia e incremento di potenza frigorifera in funzione della temperatura di esercizio e della temperatura di evaporazione

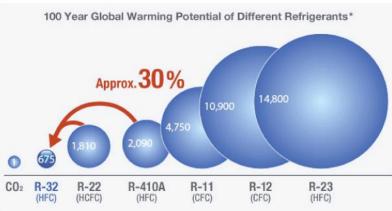
RIASSUMENDO...

BENEFICI TEORICI MASSIMI:

- ✓ Risparmio di energia fino al 23% in impianti di refrigerazione industriali
- ✓ Potenza frigorifera incrementata fino al 56% con lo stesso compressore
- ✓ Possibilità di retrofitting applicando il dispositivo a impianti esistenti con tempi e costi modesti

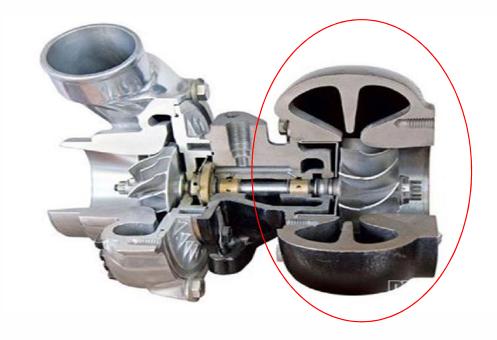

UTILIZZO DEI GAS REFRIGERANTI



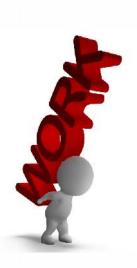


Risparmio di energia in funzione della temperatura di evaporazione e del fluido

LA FASE DI SPERIMENTAZIONE...

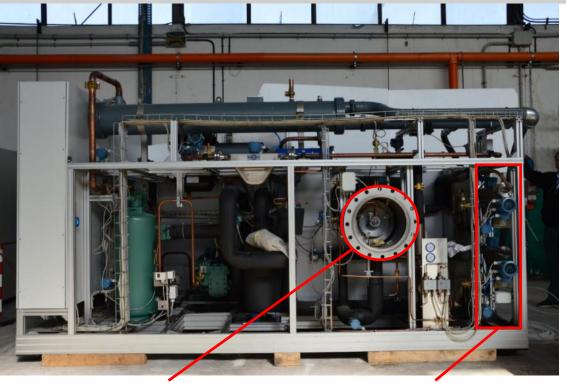

IL PROTOTIPO (1)

L'idea di partenza è il turbocompressore utilizzato nei motori delle automobili



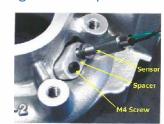
IL PROTOTIPO (2)

L'utilizzo del turbo all'interno di un impianto frigorifero con fluido refrigerante R404A ha determinato modifiche sostanziali alla sua geometria


IL BANCO DI TEST

Turbocompressore

Scambiatori di calore


Condizioni di funzionamento dell'impianto:

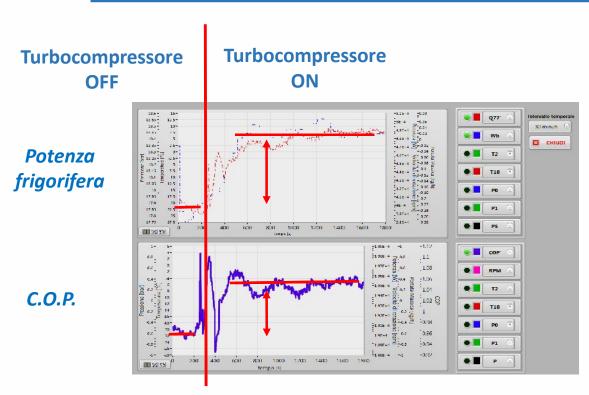
- Temperatura di evaporazione da -40°C a +10°C
- Temperatura di condensazione fino a +45°C
- Potenza frigorifera fino a 200 kW

Misuratore di portata

Misuratore del n. di giri del compressore

Misuratore di pressione

I RISULTATI PRATICI...



I BENEFICI RAGGIUNTI

I RISULTATI DELLA SPERIMENTAZIONE CONFERMANO L'APPLICABILITA' DEL TURBOCOMPRESSORE AGLI IMPIANTI FRIGORIFERI

Risultati attualmente raggiunti dal prototipo:

- > Risparmio di energia elettrica 15%
- Incremento potenza frigorifera 30%

IN SOLDONI??

CASO DI STUDIO (1)

Dispositivo applicato a un impianto di refrigerazione a -20°C (-35°C temperatura di evaporazione)

Ipotesi impianto convenzionale:

- 100 kW = potenza frigorifera
- 95 kW = potenza elettrica del compressore
- 4000 h = ore di funzionamento annue
- 380.000 kWh/anno = consumo elettrico annuo
- 0,17 €/kWh = costo energia elettrica (fonte: AEEG, 07/07/2017)

CASO DI STUDIO (2)

INSTALLAZIONE DI TURBOALGOR

CASO TEORICO (20%)

CASO REALE (15%)

- 76 kW = potenza elettrica del compressore
- 304.000 kWh/anno = consumo elettrico annuo
- 76.000 kWh/anno = risparmio annuo di energia elettrica
- 12.920 €/anno = risparmio annuo

- 81 kW potenza elettrica = del compressore
- 324.000 kWh/anno = consumo elettrico annuo
- 56.000 kWh/anno = risparmio annuo di energia elettrica
- 9.520 €/anno = risparmio annuo

PBP = 14-30 mesi

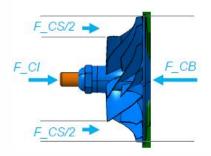
LE ATTIVITÀ PIÙ RECENTI

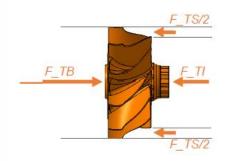
LE ATTIVITÀ RECENTI

A partire da maggio 2014 sono state svolte le seguenti attività:

- > Test di varianti sul prototipo per avvicinarsi agli obiettivi teorici
- > Ricerca partner per industrializzazione progetto
- Prime attività di dissemination dei risultati su tutta la filiera dei possibili stakeholder

LA FASE DI SVILUPPO DEL

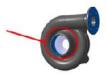

TURBOCOMPRESSORE (1)


A settembre 2015 avvio della collaborazione con la società austriaca *AVL Schrick*, una delle principali aziende operanti nei settori dell'*engineering* e prototipazione dei turbocompressori per l'industria automobilistica mondiale

SCHRICK

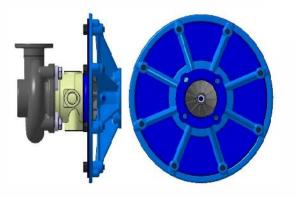
La prima fase prevede lo sviluppo e il design del turbo da 100 kW, allo scopo di avvicinare i benefici effettivamente raggiungibili dal kit *Turboalgor* a quelli calcolati per via teorica. Le immagini mostrano parte del lavoro svolto dalla società

LA FASE DI SVILUPPO DEL



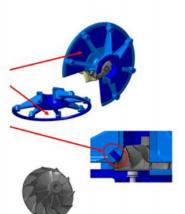
TURBOCOMPRESSORE (2

DESIGN DELLA TURBINA





DESIGN DEL TURBOCOMPRESSORE


DESIGN DEL COMPRESSORE

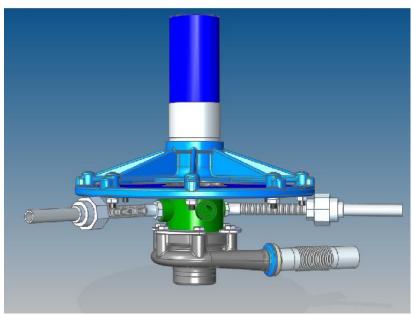
LA FASE DI 'INDUSTRIALIZZAZIONE'

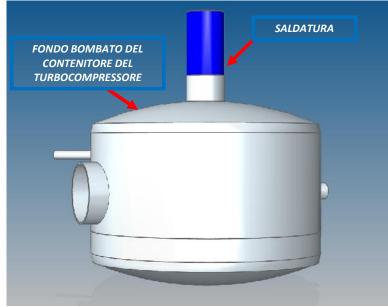
SVILUPPO DEL PRIMO PROTOTIPO DI TURBOCOMPRESSORE

DAL PROTOTIPO INIZIALE...

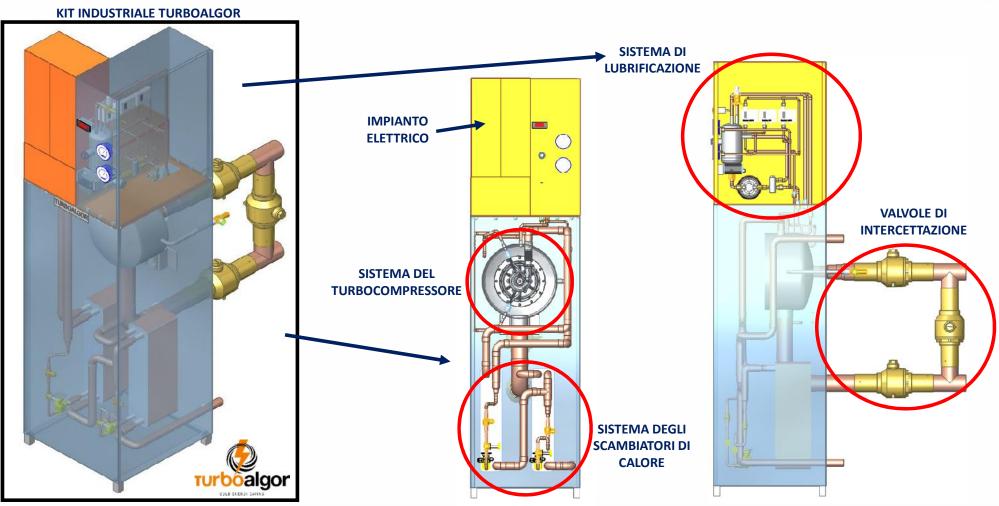
...AD UN PRODOTTO **INDUSTRIALE**

VERSIONE INDUSTRIALE DEL



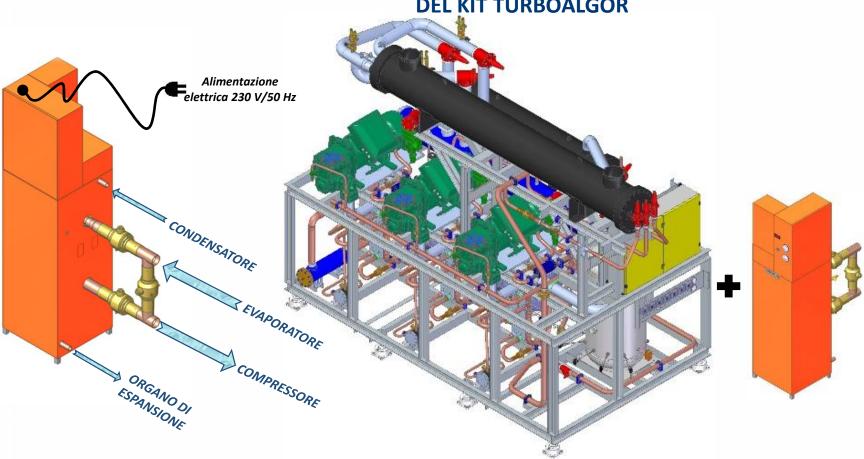

TURBOCOMPRESSORE

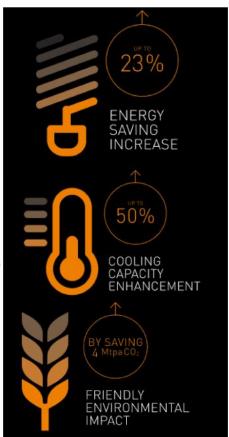
KIT TURBOCOMPRESSORE INDUSTRIALE


VERSIONE INDUSTRIALE DEL

KIT TURBOALGOR

IMPIANTO FRIGORIFERO +





IMPIANTO DI REFRIGERAZIONE EQUIPAGGIATO **DEL KIT TURBOALGOR**

CONTRIBUTI

IL MERCATO

IL MERCATO (1)

Per i primi tre anni l'attività commerciale sarà focalizzata sull'industria alimentare, sull'industria farmaceutica e sul settore retail e GDO

Settori Priorità A

Industria Alimentare Temperature di funzionamento (-40 ÷ 15)°C

Industria Chimica Temperature di funzionamento (-200 ÷ 0)°C

Retail&GDO

Temperature di funzionamento (-30 ÷ 6)°C

Trasporti Refrigerati Temperature di funzionamento (-30 ÷ 6)°C

Industria Farmaceutica

Temperature di funzionamento (-200 ÷ 0)°C

Settori Prorità B + C

Costruzioni

Server Farm & TLC

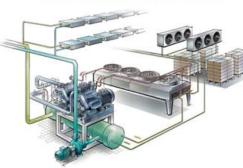
Produzione Materiali

Produzioni meccaniche

Ospedaliero e Laboratori

Taglio laser

Piste e intrattenimento


Strumenti astronomici

Settore vinicolo

Sistemi fotovoltaici

IL MERCATO (2)

La focalizzazione di Turboalgor nei diversi settori industriali è il risultato di un adeguato compromesso tra i costi energetici dedicati alla fornitura del freddo e la sensibilità ambientale

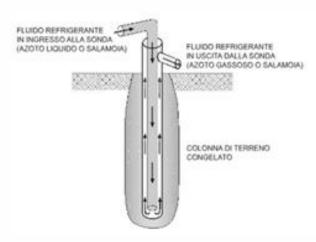
	Peso sul consumo energetico	Peso sulla fornitura del freddo	Sensibilità ambientale
Industria Alimentare	6%	2-3%	
Industria Chimica	4%	0-1%	
Vendita al Dettaglio	12%	4%	
Trasporti Refrigerati	15%	10%	
Industria Farmaceutica	3%	1%	

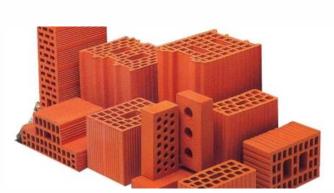
IL MERCATO (3)

Il mercato sta già chiedendo Turboalgor...

INNOVATION

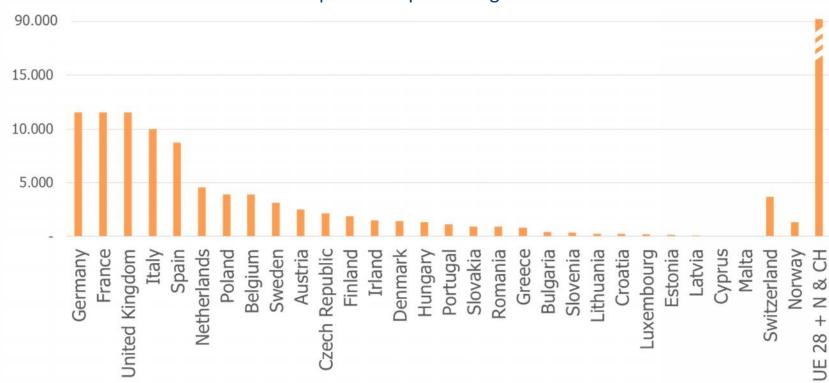
ALTRE POSSIBILI APPLICAZIONI





Altre possibili applicazioni...

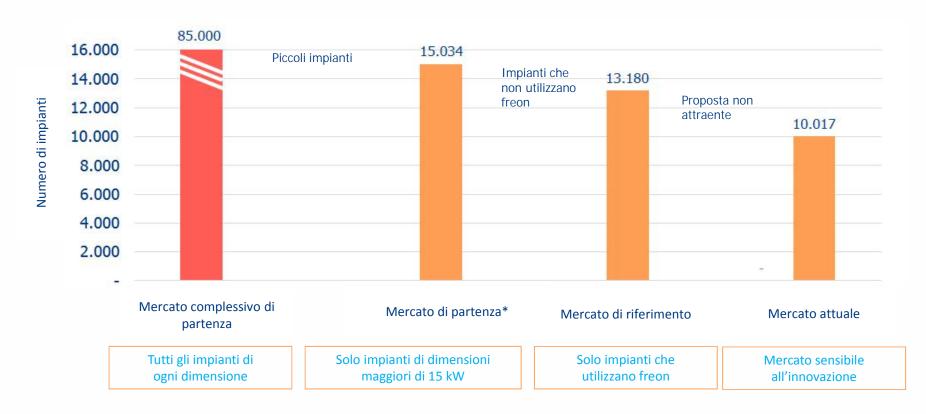
IMPIANTI DI REFRIGERAZIONE



IN EUROPA

Secondo le nostre stime, il numero di impianti di refrigerazione in Europa supera le **700.000 unità**.

Il nostro target di mercato si attesta sulle **90.000** unità, suddivise all'interno dei paesi europei nel seguente modo:

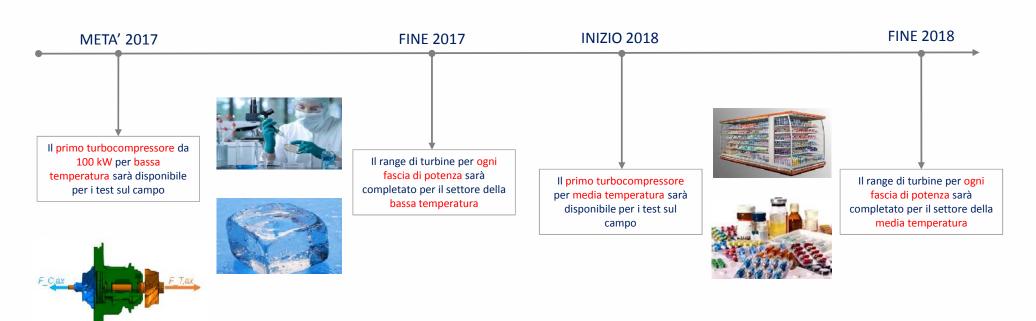

IMPIANTI DI REFRIGERAZIONE

Per quanto concerne il mercato italiano...

^{*} Impianti di potenza installata al di sopra dei 15 kW

SVILUPPI FUTURI

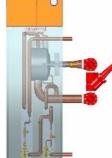
SVILUPPI FUTURI

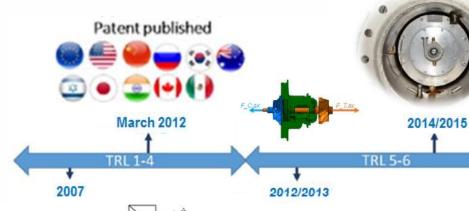


QUANDO TURBOALGOR SARA' PRONTO PER IL MERCATO?

Attualmente il progetto Cold Energy è prossimo a raggiungere lo stato di avanzamento di industrializzazione del prodotto e questa attività sarà completata nel giro di 2 anni

HORIZON 2020 – FTtl PILOT





FAST TRACK TO INNOVATION

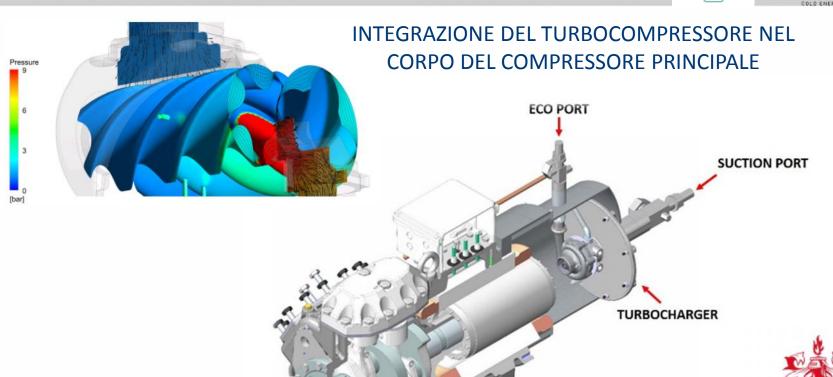
TRL = Total Readiness Level

Prima fase di vendita:

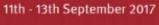
- 2018/2019: Italia, Germania bassa temperatura; Seconda fase di vendita (fase di espansione):
- 2019/2020/2021: (+) Francia, Spagna, Regno Unito, (+) media temperatura
- 2021/2022/2023: (+) Resto d'Europa, Extra UE,
 (+) alta temperatura

- Disegno, realizzazione ed esecuzione dei test sui prototipi di turbocompressore per tutte le fasce di potenza individuate
- Disegno dei turbocompressori per temperature di esercizio corrispondenti al condizionamento dell'aria (alta temperatura)
- Selezione di possibili partner nel settore del manifatturiero
- Sviluppo della linea di produzione
- Attività di marketing e di comunicazione
- Pre-commercializzazione

ULTERIORI SVILUPPI



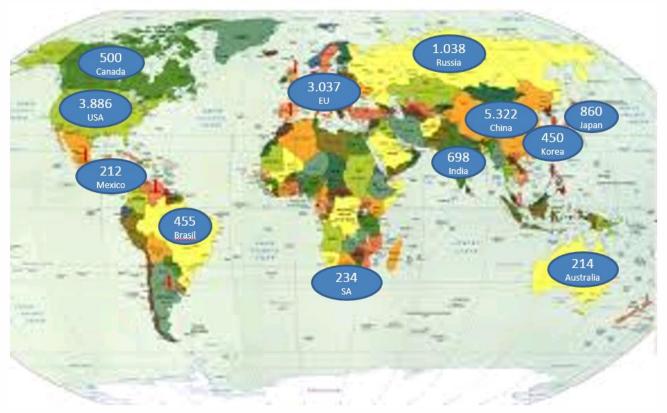
- EST 1894 -



10th International conference on compressors and their systems. In conjunction with the Institution of Mechanical Engineers.

GRAZIE PER L'ATTENZIONE

Q&A **BACK UP SLIDES**



Worldwide Energy Consumption per Main Countries (kGWh)

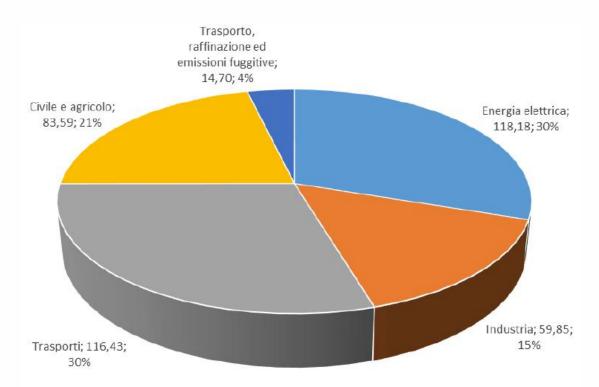
Source: World Factbook (https://www.cia.gov/library/publications/the-world-factbook/rankorder/2233rank.html)

Consumo di energia elettrica per settore merceologico in Italia

Tipi Attività	2014 GWh	2015 GWh	Var %
1.AGRICOLTURA	5.372,1	5.689,9	5,9
2.INDUSTRIA	122.505,0	122.362,3	-0,1
3.Manifatturiera di base	53.570,7	52.234,0	-2,5
4. Siderurgica	18.355,4	17.439,5	-5,0
5. Metalli non Ferrosi	2.522,2	2.482,7	-1,6
6. Chimica	14.203,3	13.961,4	-1,7
7 di cui fibre	447,0	374,4	-16,2
Materiali da costruzione	9.818,3	9.614,9	-2,1
9 estrazione da cava	643,1	626,9	-2,5
10 ceramiche e vetrarie	4,421,0	4.378,2	-1,0
11 cemento, calce e gesso	2.844,6	2.705,4	-4,9
12 laterizi	404,5	384,7	-4,9
13 manufatti in cemento	406,0	394,2	-2,9
14 altre lavorazioni	1.099,0	1.125,5	2,4
15. Cartaria	8.671,5	8.735,5	0,7
16 di cui carta e cartotecnica	7.406,7	7.564,4	2,1
17.Manifatturiera non di base	52.113,5	52.983,3	1,7
18. Alimentare	11.971,9	12.148,1	1,5
19. Tessile, abbigl. e calzature	5.236,9	5.231,5	-0,1
20 tessile	3.682,6	3.632,0	-1,4
21 vestiario e abbigliamento	557,5	586,6	5,2
22 pelli e cuoio	559,6	558,6	-0,2
23 calzature	437,2	454,2	3,9
24. Meccanica	19.531,0	19.944,3	2,1
25 di cui apparecch, elett, ed elettron.	2.822,8	3.026,8	7,2

26. Mezzi di Trasporto	3.340,0	3.518,2	5,3
27 di cui mezzi di trasporto terrestri	2.617,7	2.751,1	5,1
28. Lavoraz. Plastica e Gomma	7.570,9	7.708,2	1,8
29 di cui articoli in mat. plastiche	6.344,6	6.374,9	0,5
30. Legno e Mobilio	2.894,2	3.008,9	4,0
31. Altre Manifatturiere	1.568,6	1.424,1	-9,2
32.Costruzioni	1.251,1	1.355,0	8,3
33.Energia ed acqua	15.569,7	15.790,0	1,4
34. Estrazione Combustibili	397,4	398,2	0,2
35. Raffinazione e Cokerie	5.272,2	5.329,2	1,1
36. Elettricita' e Gas	3.917,0	3.969,9	1,4
37. Acquedotti	5.983,1	6.092,7	1,8
38.TERZIARIO	98.951,4	102.940,5	4,0
39. Servizi vendibili	79.295,9	82.756,0	4,4
40. Trasporti	10.462,3	10.855,6	3,8
41. Comunicazioni	4.082,9	4.161,0	1,9
42. Commercio	20.905,9	21.047,1	0,7
43. Alberghi, Ristoranti e Bar	10.878,3	11.125,7	2,3
44. Credito ed assicurazioni	2.171,3	2.184,4	0,6
45. Altri Servizi Vendibili	30.795,2	33.382,2	8,4
46. Servizi non vendibili	19.655,5	20.184,5	2,7
47. Pubblica amministrazione	4.609,5	4.643,1	0,7
48. Illuminazione pubblica	5.885,1	6.219,9	5,7
49. Altri Servizi non Vendibili	9.160,9	9.321,4	1,8
50.DOMESTICO	64.255,0	66.187,3	3,0
51 di cui serv. gen. edifici	5.386,8	5.438,0	1,0
52.TOTALE	291.083,5	297.179,9	2,1

Fonte: Terna (https://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni/consumienergiaelettricapersettoremerceologico.aspx)



Emissioni CO2 in Italia per macrosettori (Mton)

Fonte: Serie storiche delle emissioni di gas serra 1990-2011 – SINANET - ISPRA (http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/serie-storiche-delle-emissioni-di-gas-serra/view)

IL CONFRONTO CON LO STATO DELL'ARTE...

LO STATO DELL'ARTE

La tabella che segue riassume le soluzioni progettuali attualmente presenti sul mercato che permettono di ottenere un incremento dell'efficienza energetica e/o della performance in un impianto di refrigerazione a compressione di vapore

-		Tipo di compressore		sore
	Descrizione	Scroll	A vite	A pistoni
Economizzatore	Un ulteriore scambiatore di calore, che ha lo scopo di creare un "processo di sub-raffreddamento" del liquido in uscita dal condensatore, aumentando la potenza frigorifera con un piccolo aumento della potenza assorbita dal compressore, migliora l'efficienza del ciclo.	SI	SI	NO
Inverter	Componente elettronico che permette di variare la velocità del motore elettrico, che è normalmente fissa. Questo tipo di regolazione può essere ottenuta modulando la fornitura di energia elettrica. Questi dispositivi possono essere integrati in tutti i tipi di motori elettrici.	SI	SI	SI
Due stadi di compressione + economizzatore	Questa tecnologia utilizza due compressori installati in serie. I principali inconvenienti di questa tecnologia sono costi elevati e gestione complicata, che rende il sistema idoneo solo in casi molto specifici (es. temperature molto basse). Questa tecnologia è normalmente accoppiata con un economizzatore.	NO	NO	SI

CONFRONTO (1)

Il primo confronto tra le differenti tecnologie è stato fatto assumendo che tutte le tipologie di compressione esaminate (scroll, vite ed alternativo) abbiano lo stesso rendimento isoentropico e volumetrico

DIFFERENTI SOLUZIONI PROGETTUALI	C.O.P.	$\frac{\Delta COP}{COP_0}$ (%)	$\frac{\Delta Q}{Q_0}$ (%)	$\frac{\Delta C}{C_0}$ (%)
Convenzionale	1,34	-	-	-
Compressore a vite e economizzatore	1,65	23	47	4
Compressore scroll e economizzatore	1,65	23	47	4*
Doppio stadio di compressione e economizzatore	1,65	23	-	30
Dispositivo Turboalgor	1,74	30 (+30%)	56 (+ 19%)	14

^{*} Il compressore scroll esiste solo per piccole potenze diversamente dal dispositivo Turboalgor previsto per impianti di taglia medio-alta

N.B. Il dispositivo *Turboalgor* consente un incremento del C.O.P. e della potenza frigorifera superiore rispetto alle altre soluzioni progettuali analizzate rispettivamente del 30% e del 19% e di fatto diventa economicamente il più conveniente dopo 2 anni

CONFRONTO (2)

Un secondo confronto è stato effettuato prendendo in esame le prestazioni dei compressori così come dichiarate dai costruttori (compressori Bitzer).

I risultati ottenuti sono sintetizzati nella seguente tabella:

SOLUZIONE COSTRUTTIVA	Q	P _{el}	C.O.P.	Δ С.О.Р.
1 - Compressore a vite	34,0	37,7	0,9	-
2 - Compressore alternativo	34,5	30,3	1,14	-
3 - Compressore a vite + economizzatore	52,7	44,6	1,18	(3 vs1) $\frac{(1.18-0.9)}{0.9} = 31\%$
4 - Compressore a vite + <i>Turboalgor</i>	57,3	41,4	1,38	(4 vs 3) $\frac{(1.38-1.18)}{1.18-0.9} = 71\%$
5 - Compressore alternativo + <i>Turboalgor</i>	63,9	41,8	1,53	(5 vs 2) $\frac{(1.53-1.14)}{1.14} = 34\%$

Dal confronto emerge che, assumendo le effettive prestazioni dei compressori, i benefici legati all'utilizzo del dispositivo *Turboalgor* sono ancora più evidenti